张胜东

教育经历


江苏省南京市金陵中学 2007.9-2010.7

长春理工大学光电信息学院本科 2010.9-2014.7

  • 物理系,光学专业
  • 获奖情况:

2010-2011 学年 一等奖学金
2011-2012 学年 一等奖学金
2012-2013 学年 一等奖学金
2013-2014 学年 国家奖学金
校级 和 院级 优秀毕业论文

  • 获证书情况:

全国蓝桥杯软件大赛全国总决赛 二等奖
全国大学生数学建模竞赛吉林赛区 二等奖
吉林省程序设计大赛(acm) 一等奖
吉林省电子设计大赛 二等奖
全国信息技术考试数据库工程师认证
全国计算机四级数据库工程师

南京邮电大学研究生 2015.9-2018.7

  • 计算机技术专业
  • 获奖情况:

凯易讯软件大赛全国总决赛 第 25 名
中兴软件编程大赛 决赛
黑马大赛全国总决赛 第 2 名
全国物联网设计竞赛 二等奖

  • 主要项目

    1. 卫星鉴权高并发服务器和客户端

      使用了 epoll,fork,socket,pipe,命名管道 FIFO 等的服务器和客户端程序,功能是串口连接北邮的网关设备进行控制,同时接收用户的信息,若是登录信息就进行鉴权,鉴权通过就将此端口转发规则写入网关设备,同时还涉及到信道分配,流量管理,加解密通讯等。

    2. 大气质量监测及预测系统

      树莓派开 gpio 读取传感器并上传云端,同时有触屏显示界面;跨平台客户端从云端读取数据,并作 3d 显示;用 php 写的微信公众号服务器程序,支持查询、订阅和报警;用 Python 写了机器学习的线性回归和在线学习,来预测第二天的空气质量

    3. 水产品监控及直播系统

      与中科院南京软件研究所合作,使用单片机连接摄像头采集视频信号,使用 EasyDarwin 推送视频流,使用拉流技术建立起流媒体管理云平台,从而实现一对多的直播效果,类似于现在的直播软件。

    4. 黑马大赛:商品类目预测

      题目:只给商品标题和已有分类,测试集中可能需要分到新的类。

      方案:使用 多线程jieba分词 得到商品标题的分词向量,然后手撸的朴素贝叶斯算法,同时做了一些修改: 当一个词在某个类中出现的频率低于所设阈值时,则将该词在这类的权重置为0,以此来避免大众词汇对于分类的干扰,提升小样本类别的识别率 ;并且当分类得分低于阈值时,则新建分类,并更新矩阵。

    5. 利用视频关键帧预测中间帧

      教研室项目:视频传输时只传关键帧,中间的补帧利用机器学习预测出。具体是将画面分割成许多8*8的小块,将每一块丢进神经网络计算运动向量,再将结果平滑,得到运动轨迹,从而生成中间帧。最后,提供训练好的模型和供c++调用的python的接口给下游。

    6. 盲人导盲项目

      单板机放置于盲人帽子上,实时语音识别出口令后,调用摄像头拍照,开启控制信令socket与服务器建立会话,然后建立数据socket,将压缩后的图片发送给服务器( 图片压缩后可以降低图片中杂项的干扰,提高对于主体的识别率 )。服务器使用yolo进行物体识别,对于主要物体的方位和距离进行估算,将结果以json格式返回给单板机。单板机接收到识别结果后,语音合成内容,播报出来。

工作经历


华为 数据通信网络协议开发部 2018.7-2020.5

  • 主要项目

    1. 独立设计 Trunk 软件选口算法,使用分层的 avl 管理端口资源,使板级异常的主备切换耗时从原来的几百毫秒,降低至几毫秒。

    2. 使用 bitmap 设计并完成网络协议的动态唯一标签申请及分配模块

    3. 对开源代码 sprintf 进行整改,成功对 va_list 底层异构所导致的异常进行定位,并做出应对方案

    4. 成为代码 committer,负责部门代码微重构,及代码review,并指导新员工编程;

    5. 被选拔进入软件学院进修,并成为部门第一个通过软件认证考试的人

    6. 日常分享技术总结,并在内网发博客 10 余篇,累计 UV 阅读量 3000 多人。

  • 个人项目

    1. 参加 科赛Kesci 的 「二分类算法」提供银行精准营销解决方案 比赛,取得全球100+名次,获得一张100美元AWS代金券。

华为 消费者云服务HiCloud开发部 2020.5-至今

在浏览器算法团队,负责NLP模型和搜索直达的排序模型 至今。

  • 主要项目

    1. 优质文章模型(浏览器每日精选栏目):经bert得文章embedding(即文章的语义信息),再拼接上文章的结构信息(段落、字数、图片数、来源、作者等,经过embedding和标准化),接上双塔网络,判断文章优质与否,以及属于哪个优质类别。

    2. 层次文章分类模型:根据各层次分类之间天然的关联性,同时学习多个label,设计多任务的Bert模型(将一级分类网络的最后一级输出,拼上之前bert输出的embedding,再进二级分类网络,以此类推),在学习阶段就即可自动进行层次分类校准。并且,在推断时,可以获取各层分类类别的概率,采用beam search,进行有限度的扩展搜索。

    3. 搜索直达功能的排序模型:打通FTRL模型上线,在产品诞生之初快速赋能;后切换到DCN模型,自动进行特征交叉;现转向ESMM模型,多任务,同时训练 CTR 和 CVR 指标,以期真正提升 CTCVR 业务指标。

    4. 同时做过 文章地域模型、时效模型、负面文章模型、友商吹捧文章模型等,主管NLP领域的分类模型。

  • 个人项目

    1. 编写股票监控平台。采用docker部署爬虫模块、量化指标算法模块、订阅分发模块等,各模块之间使用rabbitmq和redis,以及mongodb连接。爬虫模块爬取股票数据存入通用数据库接口(mongodb),并缓存至redis;算法模块监控rabbitmq,从而处理数据并将报警信息存入redis;订阅分发模块监控到有报警信息后主动向微信订阅用户推送;同时部署有微信服务器,完成与微信用户的交互。https://www.zhangshengdong.com/post/monitor_stock_system/


pdf版简历

本科时期的旧博客: http://zhangshengdong29.lofter.com/view