背景

在nlp领域,预训练模型bert可谓是红得发紫。

但现在能搜到的大多数都是pytorch写的框架,而且大多都是单输出模型。

所以,本文以 有相互关系的多层标签分类 为背景,用keras设计了多输出、参数共享的模型。

以上,是之前一篇文章的开头。那篇文章读取bert使用的是keras_bert第三方库,后来发现,兼容性等不是太好。

所以这篇准备采用transformers实现相同功能。(当然,兼容性要比keras_bert第三方库好一点,但限制是必须要tensorflow2)

transformers基础应用

首先,可以在命令行里,使用如下命令,将tensorflow的检查点文件转成pytorch模型文件:

1
2
3
4
transformers-cli convert --model_type bert \
  --tf_checkpoint chinese_L-12_H-768_A-12/bert_model.ckpt \
  --config chinese_L-12_H-768_A-12/bert_config.json \
  --pytorch_dump_output chinese_L-12_H-768_A-12/pytorch_model.bin

随后,可以使用如下代码,读取bert模型:

1
bert_model = TFBertForPreTraining.from_pretrained("./chinese_L-12_H-768_A-12/", from_pt=True)

最后,可以使用如下方式读取bert输出结果,并搭建模型:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
def get_model(label_list):
    K.clear_session()
    
    bert_model = TFBertForPreTraining.from_pretrained(bert_path, from_pt=True)
 
    input_indices = Input(shape=(None,), dtype='int32')
 
    bert_output = bert_model(input_indices)
    projection_logits = bert_output[0]
    bert_cls = Lambda(lambda x: x[:, 0])(projection_logits) # 取出[CLS]对应的向量用来做分类
    
    dropout = Dropout(0.5)(bert_cls)
    output = Dense(len(label_list), activation='softmax')(dropout)
 
    model = Model(input_indices, output)
    model.compile(loss='sparse_categorical_crossentropy',
                  optimizer=Adam(1e-5),    #用足够小的学习率
                  metrics=['accuracy'])
    print(model.summary())
    return model

附录

全部源码

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
# 导包


```python
import os
import sys
import re
from collections import Counter
import random

from tqdm import tqdm
import numpy as np
import tensorflow.keras as keras
from keras.metrics import top_k_categorical_accuracy
from keras.layers import *
from keras.callbacks import *
from keras.models import Model, load_model
import keras.backend as K
from keras.optimizers import Adam
from keras.utils import to_categorical
from transformers import (
    BertTokenizer,
    TFBertForPreTraining,
    TFBertModel,
)
```


```python

```


```python
data_path = "000_text_classifier_tensorflow_textcnn/THUCNews/"
text_max_length = 512
bert_path = r"chinese_L-12_H-768_A-12"
```


```python

```


```python

```


```python

```


```python

```

# 构建原数据文本迭代器


```python
def _read_file(filename):
    """读取一个文件并转换为一行"""
    with open(filename, 'r', encoding='utf-8') as f:
        s = f.read().strip().replace('\n', '。').replace('\t', '').replace('\u3000', '')
        return re.sub(r'。+', '。', s)
```


```python
def get_data_iterator(data_path):
    for category in os.listdir(data_path):
        category_path = os.path.join(data_path, category)
        for file_name in os.listdir(category_path):
            yield _read_file(os.path.join(category_path, file_name)), category
```


```python
it = get_data_iterator(data_path)
```


```python
next(it)
```




    ('竞彩解析:日本美国争冠死磕 两巴相逢必有生死。周日受注赛事,女足世界杯决赛、美洲杯两场1/4决赛毫无疑问是全世界球迷和彩民关注的焦点。本届女足世界杯的最大黑马日本队能否一黑到底,创造亚洲奇迹?女子足坛霸主美国队能否再次“灭黑”成功,成就三冠伟业?巴西、巴拉圭冤家路窄,谁又能笑到最后?诸多谜底,在周一凌晨就会揭晓。日本美国争冠死磕。本届女足世界杯,是颠覆与反颠覆之争。夺冠大热门东道主德国队1/4决赛被日本队加时赛一球而“黑”,另一个夺冠大热门瑞典队则在半决赛被日本队3:1彻底打垮。而美国队则捍卫着女足豪强的尊严,在1/4决赛,她们与巴西女足苦战至点球大战,最终以5:3淘汰这支迅速崛起的黑马球队,而在半决赛,她们更是3:1大胜欧洲黑马法国队。美日两队此次世界杯进程惊人相似,小组赛前两轮全胜,最后一轮输球,1/4决赛同样与对手90分钟内战成平局,半决赛竟同样3:1大胜对手。此次决战,无论是日本还是美国队夺冠,均将创造女足世界杯新的历史。两巴相逢必有生死。本届美洲杯,让人大跌眼镜的事情太多。巴西、巴拉圭冤家路窄似乎更具传奇色彩。两队小组赛同分在B组,原本两个出线大热门,却双双在前两轮小组赛战平,两队直接交锋就是2:2平局,结果双双面临出局危险。最后一轮,巴西队在下半场终于发威,4:2大胜厄瓜多尔后来居上以小组第一出线,而巴拉圭最后一战还是3:3战平委内瑞拉获得小组第三,侥幸凭借净胜球优势挤掉A组第三名的哥斯达黎加,获得一个八强席位。在小组赛,巴西队是在最后时刻才逼平了巴拉圭,他们的好运气会在淘汰赛再显神威吗?巴拉圭此前3轮小组赛似乎都缺乏运气,此番又会否被幸运之神补偿一下呢?。另一场美洲杯1/4决赛,智利队在C组小组赛2胜1平以小组头名晋级八强;而委内瑞拉在B组是最不被看好的球队,但竟然在与巴西、巴拉圭同组的情况下,前两轮就奠定了小组出线权,他们小组3战1胜2平保持不败战绩,而入球数跟智利一样都是4球,只是失球数比智利多了1个。但既然他们面对强大的巴西都能保持球门不失,此番再创佳绩也不足为怪。',
     '彩票')




```python

```


```python

```


```python

```


```python

```

# 构建标签表


```python
def read_category(data_path):
    """读取分类目录,固定"""
    categories = os.listdir(data_path)

    cat_to_id = dict(zip(categories, range(len(categories))))

    return categories, cat_to_id
```


```python
categories, cat_to_id = read_category(data_path)
```


```python
cat_to_id
```




    {'彩票': 0,
     '家居': 1,
     '游戏': 2,
     '股票': 3,
     '科技': 4,
     '社会': 5,
     '财经': 6,
     '时尚': 7,
     '星座': 8,
     '体育': 9,
     '房产': 10,
     '娱乐': 11,
     '时政': 12,
     '教育': 13}




```python
categories
```




    ['彩票',
     '家居',
     '游戏',
     '股票',
     '科技',
     '社会',
     '财经',
     '时尚',
     '星座',
     '体育',
     '房产',
     '娱乐',
     '时政',
     '教育']




```python

```


```python

```


```python

```


```python

```

# 构建训练、验证、测试集


```python
def build_dataset(data_path, train_path, dev_path, test_path):
    data_iter = get_data_iterator(data_path)
    with open(train_path, 'w', encoding='utf-8') as train_file, \
         open(dev_path, 'w', encoding='utf-8') as dev_file, \
         open(test_path, 'w', encoding='utf-8') as test_file:
        
        for text, label in tqdm(data_iter):
            radio = random.random()
            if radio < 0.8:
                train_file.write(text + "\t" + label + "\n")
            elif radio < 0.9:
                dev_file.write(text + "\t" + label + "\n")
            else:
                test_file.write(text + "\t" + label + "\n")
```


```python
# build_dataset(data_path, r"data/keras_bert_train.txt", r"data/keras_bert_dev.txt", r"data/keras_bert_test.txt")
```


```python

```


```python

```


```python

```


```python

```

# 获取数据集样本个数


```python
def get_sample_num(data_path):
    count = 0
    with open(data_path, 'r', encoding='utf-8') as data_file:
        for line in tqdm(data_file):
            count += 1
    return count
```


```python
train_sample_count = get_sample_num(r"data/keras_bert_train.txt")
```

    668858it [00:09, 71362.95it/s]



```python
dev_sample_count = get_sample_num(r"data/keras_bert_dev.txt")
```

    83721it [00:01, 72723.97it/s]



```python
test_sample_count = get_sample_num(r"data/keras_bert_test.txt")
```

    83496it [00:01, 72445.72it/s]



```python
train_sample_count, dev_sample_count, test_sample_count
```




    (668858, 83721, 83496)




```python

```


```python

```


```python

```


```python

```

# 构建数据迭代器


```python
def get_text_iterator(data_path):
    with open(data_path, 'r', encoding='utf-8') as data_file:
        for line in data_file:
            data_split = line.strip().split('\t')
            if len(data_split) != 2:
                print(line)
                continue
            yield data_split[0], data_split[1]
```


```python
it = get_text_iterator(r"data/keras_bert_train.txt")
```


```python
next(it)
```




    ('竞彩解析:日本美国争冠死磕 两巴相逢必有生死。周日受注赛事,女足世界杯决赛、美洲杯两场1/4决赛毫无疑问是全世界球迷和彩民关注的焦点。本届女足世界杯的最大黑马日本队能否一黑到底,创造亚洲奇迹?女子足坛霸主美国队能否再次“灭黑”成功,成就三冠伟业?巴西、巴拉圭冤家路窄,谁又能笑到最后?诸多谜底,在周一凌晨就会揭晓。日本美国争冠死磕。本届女足世界杯,是颠覆与反颠覆之争。夺冠大热门东道主德国队1/4决赛被日本队加时赛一球而“黑”,另一个夺冠大热门瑞典队则在半决赛被日本队3:1彻底打垮。而美国队则捍卫着女足豪强的尊严,在1/4决赛,她们与巴西女足苦战至点球大战,最终以5:3淘汰这支迅速崛起的黑马球队,而在半决赛,她们更是3:1大胜欧洲黑马法国队。美日两队此次世界杯进程惊人相似,小组赛前两轮全胜,最后一轮输球,1/4决赛同样与对手90分钟内战成平局,半决赛竟同样3:1大胜对手。此次决战,无论是日本还是美国队夺冠,均将创造女足世界杯新的历史。两巴相逢必有生死。本届美洲杯,让人大跌眼镜的事情太多。巴西、巴拉圭冤家路窄似乎更具传奇色彩。两队小组赛同分在B组,原本两个出线大热门,却双双在前两轮小组赛战平,两队直接交锋就是2:2平局,结果双双面临出局危险。最后一轮,巴西队在下半场终于发威,4:2大胜厄瓜多尔后来居上以小组第一出线,而巴拉圭最后一战还是3:3战平委内瑞拉获得小组第三,侥幸凭借净胜球优势挤掉A组第三名的哥斯达黎加,获得一个八强席位。在小组赛,巴西队是在最后时刻才逼平了巴拉圭,他们的好运气会在淘汰赛再显神威吗?巴拉圭此前3轮小组赛似乎都缺乏运气,此番又会否被幸运之神补偿一下呢?。另一场美洲杯1/4决赛,智利队在C组小组赛2胜1平以小组头名晋级八强;而委内瑞拉在B组是最不被看好的球队,但竟然在与巴西、巴拉圭同组的情况下,前两轮就奠定了小组出线权,他们小组3战1胜2平保持不败战绩,而入球数跟智利一样都是4球,只是失球数比智利多了1个。但既然他们面对强大的巴西都能保持球门不失,此番再创佳绩也不足为怪。',
     '彩票')




```python
tokenizer = BertTokenizer.from_pretrained(bert_path)
```


```python
def get_keras_bert_iterator(data_path, cat_to_id, tokenizer):
    while True:
        data_iter = get_text_iterator(data_path)
        for text, category in data_iter:
            input_ids = tokenizer.encode(text, 
                                         max_length=text_max_length, 
                                         add_special_tokens=True, 
                                         padding='max_length', 
                                         truncation_strategy='only_first', 
#                                          return_tensors='tf'
                                        )
            yield input_ids, cat_to_id[category]
```


```python
it = get_keras_bert_iterator(r"data/keras_bert_train.txt", cat_to_id, tokenizer)
```


```python
# next(it)
```


```python

```


```python

```


```python

```


```python

```

# 构建批次数据迭代器


```python
def batch_iter(data_path, cat_to_id, tokenizer, batch_size=64, shuffle=True):
    """生成批次数据"""
    keras_bert_iter = get_keras_bert_iterator(data_path, cat_to_id, tokenizer)
    while True:
        data_list = []
        for _ in range(batch_size):
            data = next(keras_bert_iter)
            data_list.append(data)
        if shuffle:
            random.shuffle(data_list)
        
        indices_list = []
        label_index_list = []
        for data in data_list:
            indices, label_index = data
            indices_list.append(indices)
            label_index_list.append(label_index)

        yield np.array(indices_list), np.array(label_index_list)
```


```python
it = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, batch_size=1)
```


```python
# next(it)
```


```python
it = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, batch_size=2)
```


```python
next(it)
```

    /home/zsd-server/miniconda3/envs/my/lib/python3.8/site-packages/transformers/tokenization_utils_base.py:2162: FutureWarning: The `truncation_strategy` argument is deprecated and will be removed in a future version, use `truncation=True` to truncate examples to a max length. You can give a specific length with `max_length` (e.g. `max_length=45`) or leave max_length to None to truncate to the maximal input size of the model (e.g. 512 for Bert).  If you have pairs of inputs, you can give a specific truncation strategy selected among `truncation='only_first'` (will only truncate the first sentence in the pairs) `truncation='only_second'` (will only truncate the second sentence in the pairs) or `truncation='longest_first'` (will iteratively remove tokens from the longest sentence in the pairs).
      warnings.warn(





    (array([[ 101, 4993, 2506, ...,  131,  123,  102],
            [ 101, 2506, 3696, ..., 1139,  125,  102]]),
     array([0, 0]))




```python

```


```python

```


```python

```


```python

```

# 定义base模型


```python
# !transformers-cli convert --model_type bert \
#   --tf_checkpoint chinese_L-12_H-768_A-12/bert_model.ckpt \
#   --config chinese_L-12_H-768_A-12/bert_config.json \
#   --pytorch_dump_output chinese_L-12_H-768_A-12/pytorch_model.bin
```


```python
# bert_model = TFBertForPreTraining.from_pretrained("./chinese_L-12_H-768_A-12/", from_pt=True)
```


```python
# # it = get_keras_bert_iterator(r"data/keras_bert_train.txt", cat_to_id, tokenizer)
# it = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, batch_size=1)
# out = bert_model(next(it)[0])
# out[0]
```


```python
def get_model(label_list):
    K.clear_session()
    
    bert_model = TFBertForPreTraining.from_pretrained(bert_path, from_pt=True)
 
    input_indices = Input(shape=(None,), dtype='int32')
 
    bert_output = bert_model(input_indices)
    projection_logits = bert_output[0]
    bert_cls = Lambda(lambda x: x[:, 0])(projection_logits) # 取出[CLS]对应的向量用来做分类
    
    dropout = Dropout(0.5)(bert_cls)
    output = Dense(len(label_list), activation='softmax')(dropout)
 
    model = Model(input_indices, output)
    model.compile(loss='sparse_categorical_crossentropy',
                  optimizer=Adam(1e-5),    #用足够小的学习率
                  metrics=['accuracy'])
    print(model.summary())
    return model
```


```python
early_stopping = EarlyStopping(monitor='val_loss', patience=3)   #早停法,防止过拟合
plateau = ReduceLROnPlateau(monitor="val_accuracy", verbose=1, mode='max', factor=0.5, patience=2) #当评价指标不在提升时,减少学习率
checkpoint = ModelCheckpoint('trained_model/keras_bert_THUCNews.hdf5', monitor='val_loss',verbose=2, save_best_only=True, mode='max', save_weights_only=True) #保存最好的模型
```

## 模型训练


```python
def get_step(sample_count, batch_size):
    step = sample_count // batch_size
    if sample_count % batch_size != 0:
        step += 1
    return step
```


```python
batch_size = 2
train_step = get_step(train_sample_count, batch_size)
dev_step = get_step(dev_sample_count, batch_size)

train_dataset_iterator = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, batch_size)
dev_dataset_iterator = batch_iter(r"data/keras_bert_dev.txt", cat_to_id, tokenizer, batch_size)

model = get_model(categories)

#模型训练
model.fit(
    train_dataset_iterator,
    steps_per_epoch=10,
    epochs=5,
    validation_data=dev_dataset_iterator,
    validation_steps=2,
    callbacks=[early_stopping, plateau, checkpoint],
    verbose=1
)
```

    Some weights of the PyTorch model were not used when initializing the TF 2.0 model TFBertForPreTraining: ['bert.embeddings.position_ids', 'cls.predictions.decoder.bias']
    - This IS expected if you are initializing TFBertForPreTraining from a PyTorch model trained on another task or with another architecture (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model).
    - This IS NOT expected if you are initializing TFBertForPreTraining from a PyTorch model that you expect to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a BertForSequenceClassification model).
    All the weights of TFBertForPreTraining were initialized from the PyTorch model.
    If your task is similar to the task the model of the checkpoint was trained on, you can already use TFBertForPreTraining for predictions without further training.


    WARNING:tensorflow:AutoGraph could not transform <bound method Socket.send of <zmq.sugar.socket.Socket object at 0x7f3e4d7e2340>> and will run it as-is.
    Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
    Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method
    To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
    WARNING: AutoGraph could not transform <bound method Socket.send of <zmq.sugar.socket.Socket object at 0x7f3e4d7e2340>> and will run it as-is.
    Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
    Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method
    To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert


    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
    /home/zsd-server/miniconda3/envs/my/lib/python3.8/site-packages/transformers/tokenization_utils_base.py:2162: FutureWarning: The `truncation_strategy` argument is deprecated and will be removed in a future version, use `truncation=True` to truncate examples to a max length. You can give a specific length with `max_length` (e.g. `max_length=45`) or leave max_length to None to truncate to the maximal input size of the model (e.g. 512 for Bert).  If you have pairs of inputs, you can give a specific truncation strategy selected among `truncation='only_first'` (will only truncate the first sentence in the pairs) `truncation='only_second'` (will only truncate the second sentence in the pairs) or `truncation='longest_first'` (will iteratively remove tokens from the longest sentence in the pairs).
      warnings.warn(
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.


    Model: "functional_1"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    input_1 (InputLayer)         [(None, None)]            0         
    _________________________________________________________________
    tf_bert_for_pre_training (TF TFBertForPreTrainingOutpu 102882442 
    _________________________________________________________________
    lambda (Lambda)              (None, 21128)             0         
    _________________________________________________________________
    dropout_37 (Dropout)         (None, 21128)             0         
    _________________________________________________________________
    dense (Dense)                (None, 14)                295806    
    =================================================================
    Total params: 103,178,248
    Trainable params: 103,178,248
    Non-trainable params: 0
    _________________________________________________________________
    None
    Epoch 1/5
    WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
    WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.


    /home/zsd-server/miniconda3/envs/my/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:431: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
      warnings.warn(
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.


    WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
    WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
    10/10 [==============================] - ETA: 0s - loss: 13.3638 - accuracy: 0.1000    

    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.


    
    Epoch 00001: val_loss improved from -inf to 0.80593, saving model to trained_model/keras_bert_THUCNews.hdf5
    10/10 [==============================] - 89s 9s/step - loss: 13.3638 - accuracy: 0.1000 - val_loss: 0.8059 - val_accuracy: 1.0000
    Epoch 2/5
    10/10 [==============================] - ETA: 0s - loss: 2.2765 - accuracy: 0.3500
    Epoch 00002: val_loss did not improve from 0.80593
    10/10 [==============================] - 87s 9s/step - loss: 2.2765 - accuracy: 0.3500 - val_loss: 0.6079 - val_accuracy: 0.7500
    Epoch 3/5
    10/10 [==============================] - ETA: 0s - loss: 0.3474 - accuracy: 0.8500
    Epoch 00003: ReduceLROnPlateau reducing learning rate to 4.999999873689376e-06.
    
    Epoch 00003: val_loss did not improve from 0.80593
    10/10 [==============================] - 88s 9s/step - loss: 0.3474 - accuracy: 0.8500 - val_loss: 2.5302e-05 - val_accuracy: 1.0000
    Epoch 4/5
    10/10 [==============================] - ETA: 0s - loss: 0.0018 - accuracy: 1.0000
    Epoch 00004: val_loss did not improve from 0.80593
    10/10 [==============================] - 86s 9s/step - loss: 0.0018 - accuracy: 1.0000 - val_loss: 6.5565e-07 - val_accuracy: 1.0000
    Epoch 5/5
    10/10 [==============================] - ETA: 0s - loss: 0.0372 - accuracy: 1.0000
    Epoch 00005: ReduceLROnPlateau reducing learning rate to 2.499999936844688e-06.
    
    Epoch 00005: val_loss did not improve from 0.80593
    10/10 [==============================] - 86s 9s/step - loss: 0.0372 - accuracy: 1.0000 - val_loss: 5.9605e-07 - val_accuracy: 1.0000





    <tensorflow.python.keras.callbacks.History at 0x7f3dc062d820>




```python

```


```python

```


```python

```


```python

```

# 多输出模型

## 构建数据迭代器


```python
second_label_list = [0, 1, 2]
```


```python
def get_keras_bert_iterator(data_path, cat_to_id, tokenizer, second_label_list):
    while True:
        data_iter = get_text_iterator(data_path)
        for text, category in data_iter:
            input_ids = tokenizer.encode(text, 
                                         max_length=text_max_length, 
                                         add_special_tokens=True, 
                                         padding='max_length', 
                                         truncation_strategy='only_first', 
#                                          return_tensors='tf'
                                        )
            yield input_ids, cat_to_id[category], random.choice(second_label_list)
```


```python
it = get_keras_bert_iterator(r"data/keras_bert_train.txt", cat_to_id, tokenizer, second_label_list)
```


```python
# next(it)
```


```python
def batch_iter(data_path, cat_to_id, tokenizer, second_label_list, batch_size=64, shuffle=True):
    """生成批次数据"""
    keras_bert_iter = get_keras_bert_iterator(data_path, cat_to_id, tokenizer, second_label_list)
    while True:
        data_list = []
        for _ in range(batch_size):
            data = next(keras_bert_iter)
            data_list.append(data)
        if shuffle:
            random.shuffle(data_list)
        
        indices_list = []
        label_index_list = []
        second_label_list = []
        for data in data_list:
            indices, label_index, second_label = data
            indices_list.append(indices)
            label_index_list.append(label_index)
            second_label_list.append(second_label)

        yield np.array(indices_list), [np.array(label_index_list), np.array(second_label_list)]
```


```python
it = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, second_label_list, batch_size=2)
```


```python
next(it)
```




    (array([[ 101, 2506, 3696, ..., 1139,  125,  102],
            [ 101, 4993, 2506, ...,  131,  123,  102]]),
     [array([0, 0]), array([1, 2])])



## 定义模型


```python
def get_model(label_list, second_label_list):
    K.clear_session()
    
    bert_model = TFBertForPreTraining.from_pretrained(bert_path, from_pt=True)
 
    input_indices = Input(shape=(None,), dtype='int32')
 
    bert_output = bert_model(input_indices)
    projection_logits = bert_output[0]
    bert_cls = Lambda(lambda x: x[:, 0])(projection_logits) # 取出[CLS]对应的向量用来做分类
    
    dropout = Dropout(0.5)(bert_cls)
    output = Dense(len(label_list), activation='softmax')(dropout)

    dropout_second = Dropout(0.5)(bert_cls)
    output_second = Dense(len(second_label_list), activation='softmax')(dropout_second)
 
    model = Model(input_indices, [output, output_second])
    model.compile(loss='sparse_categorical_crossentropy',
                  optimizer=Adam(1e-5),    #用足够小的学习率
                  metrics=['accuracy'])
    print(model.summary())
    return model
```


```python
early_stopping = EarlyStopping(monitor='val_loss', patience=3)   #早停法,防止过拟合
plateau = ReduceLROnPlateau(monitor="val_loss", verbose=1, mode='max', factor=0.5, patience=2) #当评价指标不在提升时,减少学习率
checkpoint = ModelCheckpoint('trained_model/muilt_keras_bert_THUCNews.hdf5', monitor='val_loss',verbose=2, save_best_only=True, mode='max', save_weights_only=True) #保存最好的模型
```

## 模型训练


```python
batch_size = 2
train_step = get_step(train_sample_count, batch_size)
dev_step = get_step(dev_sample_count, batch_size)

train_dataset_iterator = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, second_label_list, batch_size)
dev_dataset_iterator = batch_iter(r"data/keras_bert_dev.txt", cat_to_id, tokenizer, second_label_list, batch_size)

model = get_model(categories, second_label_list)

#模型训练
model.fit(
    train_dataset_iterator,
    steps_per_epoch=10,
    epochs=5,
    validation_data=dev_dataset_iterator,
    validation_steps=2,
    callbacks=[early_stopping, plateau, checkpoint],
    verbose=1
)
```

    Some weights of the PyTorch model were not used when initializing the TF 2.0 model TFBertForPreTraining: ['bert.embeddings.position_ids', 'cls.predictions.decoder.bias']
    - This IS expected if you are initializing TFBertForPreTraining from a PyTorch model trained on another task or with another architecture (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model).
    - This IS NOT expected if you are initializing TFBertForPreTraining from a PyTorch model that you expect to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a BertForSequenceClassification model).
    All the weights of TFBertForPreTraining were initialized from the PyTorch model.
    If your task is similar to the task the model of the checkpoint was trained on, you can already use TFBertForPreTraining for predictions without further training.
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.


    Model: "functional_1"
    __________________________________________________________________________________________________
    Layer (type)                    Output Shape         Param #     Connected to                     
    ==================================================================================================
    input_1 (InputLayer)            [(None, None)]       0                                            
    __________________________________________________________________________________________________
    tf_bert_for_pre_training (TFBer TFBertForPreTraining 102882442   input_1[0][0]                    
    __________________________________________________________________________________________________
    lambda (Lambda)                 (None, 21128)        0           tf_bert_for_pre_training[0][0]   
    __________________________________________________________________________________________________
    dropout_37 (Dropout)            (None, 21128)        0           lambda[0][0]                     
    __________________________________________________________________________________________________
    dropout_38 (Dropout)            (None, 21128)        0           lambda[0][0]                     
    __________________________________________________________________________________________________
    dense (Dense)                   (None, 14)           295806      dropout_37[0][0]                 
    __________________________________________________________________________________________________
    dense_1 (Dense)                 (None, 3)            63387       dropout_38[0][0]                 
    ==================================================================================================
    Total params: 103,241,635
    Trainable params: 103,241,635
    Non-trainable params: 0
    __________________________________________________________________________________________________
    None
    Epoch 1/5
    WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
    WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.


    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.


    WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
    WARNING:tensorflow:Gradients do not exist for variables ['tf_bert_for_pre_training/bert/pooler/dense/kernel:0', 'tf_bert_for_pre_training/bert/pooler/dense/bias:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/kernel:0', 'tf_bert_for_pre_training/nsp___cls/seq_relationship/bias:0'] when minimizing the loss.
    10/10 [==============================] - ETA: 0s - loss: 13.2166 - dense_loss: 7.6030 - dense_1_loss: 5.6137 - dense_accuracy: 0.3000 - dense_1_accuracy: 0.3000 

    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.


    
    Epoch 00001: val_loss improved from -inf to 1.83895, saving model to trained_model/muilt_keras_bert_THUCNews.hdf5
    10/10 [==============================] - 92s 9s/step - loss: 13.2166 - dense_loss: 7.6030 - dense_1_loss: 5.6137 - dense_accuracy: 0.3000 - dense_1_accuracy: 0.3000 - val_loss: 1.8389 - val_dense_loss: 0.0022 - val_dense_1_loss: 1.8367 - val_dense_accuracy: 1.0000 - val_dense_1_accuracy: 0.5000
    Epoch 2/5
    10/10 [==============================] - ETA: 0s - loss: 3.4398 - dense_loss: 0.6309 - dense_1_loss: 2.8089 - dense_accuracy: 0.8000 - dense_1_accuracy: 0.3500
    Epoch 00002: val_loss improved from 1.83895 to 2.41962, saving model to trained_model/muilt_keras_bert_THUCNews.hdf5
    10/10 [==============================] - 84s 8s/step - loss: 3.4398 - dense_loss: 0.6309 - dense_1_loss: 2.8089 - dense_accuracy: 0.8000 - dense_1_accuracy: 0.3500 - val_loss: 2.4196 - val_dense_loss: 3.2663e-04 - val_dense_1_loss: 2.4193 - val_dense_accuracy: 1.0000 - val_dense_1_accuracy: 0.2500
    Epoch 3/5
    10/10 [==============================] - ETA: 0s - loss: 2.4220 - dense_loss: 0.0156 - dense_1_loss: 2.4063 - dense_accuracy: 1.0000 - dense_1_accuracy: 0.3000
    Epoch 00003: val_loss did not improve from 2.41962
    10/10 [==============================] - 86s 9s/step - loss: 2.4220 - dense_loss: 0.0156 - dense_1_loss: 2.4063 - dense_accuracy: 1.0000 - dense_1_accuracy: 0.3000 - val_loss: 1.3294 - val_dense_loss: 2.6792e-05 - val_dense_1_loss: 1.3294 - val_dense_accuracy: 1.0000 - val_dense_1_accuracy: 0.2500
    Epoch 4/5
    10/10 [==============================] - ETA: 0s - loss: 2.2683 - dense_loss: 0.0068 - dense_1_loss: 2.2615 - dense_accuracy: 1.0000 - dense_1_accuracy: 0.3500
    Epoch 00004: ReduceLROnPlateau reducing learning rate to 4.999999873689376e-06.
    
    Epoch 00004: val_loss did not improve from 2.41962
    10/10 [==============================] - 89s 9s/step - loss: 2.2683 - dense_loss: 0.0068 - dense_1_loss: 2.2615 - dense_accuracy: 1.0000 - dense_1_accuracy: 0.3500 - val_loss: 1.1061 - val_dense_loss: 0.0025 - val_dense_1_loss: 1.1036 - val_dense_accuracy: 1.0000 - val_dense_1_accuracy: 0.2500
    Epoch 5/5
    10/10 [==============================] - ETA: 0s - loss: 3.7829 - dense_loss: 0.6761 - dense_1_loss: 3.1068 - dense_accuracy: 0.9500 - dense_1_accuracy: 0.3000
    Epoch 00005: val_loss did not improve from 2.41962
    10/10 [==============================] - 89s 9s/step - loss: 3.7829 - dense_loss: 0.6761 - dense_1_loss: 3.1068 - dense_accuracy: 0.9500 - dense_1_accuracy: 0.3000 - val_loss: 1.3932 - val_dense_loss: 0.0022 - val_dense_1_loss: 1.3909 - val_dense_accuracy: 1.0000 - val_dense_1_accuracy: 0.0000e+00





    <tensorflow.python.keras.callbacks.History at 0x7f3d7ce29cd0>




```python
dev_dataset_iterator = batch_iter(r"data/keras_bert_dev.txt", cat_to_id, tokenizer, second_label_list, batch_size)
model.evaluate_generator(generator=dev_dataset_iterator, steps=2)
```

    WARNING:tensorflow:From <ipython-input-47-b8b146ad62ac>:2: Model.evaluate_generator (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use Model.evaluate, which supports generators.





    [1.1637728214263916, 0.003070184262469411, 1.1607024669647217, 1.0, 0.0]




```python
model.save_weights("trained_model/muilt_keras_bert_THUCNews_final.weights")
```


```python
model.save("trained_model/muilt_keras_bert_THUCNews_final.model")
```

    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.


    WARNING:tensorflow:From /home/zsd-server/miniconda3/envs/my/lib/python3.8/site-packages/tensorflow/python/training/tracking/tracking.py:111: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.
    Instructions for updating:
    This property should not be used in TensorFlow 2.0, as updates are applied automatically.
    WARNING:tensorflow:From /home/zsd-server/miniconda3/envs/my/lib/python3.8/site-packages/tensorflow/python/training/tracking/tracking.py:111: Layer.updates (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
    Instructions for updating:
    This property should not be used in TensorFlow 2.0, as updates are applied automatically.


    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.


    INFO:tensorflow:Assets written to: trained_model/muilt_keras_bert_THUCNews_final.model/assets



```python

```


```python

```


```python

```


```python

```

# 模型加载及测试

## load_weights


```python
model_test = get_model(categories, second_label_list)
```

    Some weights of the PyTorch model were not used when initializing the TF 2.0 model TFBertForPreTraining: ['bert.embeddings.position_ids', 'cls.predictions.decoder.bias']
    - This IS expected if you are initializing TFBertForPreTraining from a PyTorch model trained on another task or with another architecture (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model).
    - This IS NOT expected if you are initializing TFBertForPreTraining from a PyTorch model that you expect to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a BertForSequenceClassification model).
    All the weights of TFBertForPreTraining were initialized from the PyTorch model.
    If your task is similar to the task the model of the checkpoint was trained on, you can already use TFBertForPreTraining for predictions without further training.
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.


    Model: "functional_1"
    __________________________________________________________________________________________________
    Layer (type)                    Output Shape         Param #     Connected to                     
    ==================================================================================================
    input_1 (InputLayer)            [(None, None)]       0                                            
    __________________________________________________________________________________________________
    tf_bert_for_pre_training (TFBer TFBertForPreTraining 102882442   input_1[0][0]                    
    __________________________________________________________________________________________________
    lambda (Lambda)                 (None, 21128)        0           tf_bert_for_pre_training[0][0]   
    __________________________________________________________________________________________________
    dropout_37 (Dropout)            (None, 21128)        0           lambda[0][0]                     
    __________________________________________________________________________________________________
    dropout_38 (Dropout)            (None, 21128)        0           lambda[0][0]                     
    __________________________________________________________________________________________________
    dense (Dense)                   (None, 14)           295806      dropout_37[0][0]                 
    __________________________________________________________________________________________________
    dense_1 (Dense)                 (None, 3)            63387       dropout_38[0][0]                 
    ==================================================================================================
    Total params: 103,241,635
    Trainable params: 103,241,635
    Non-trainable params: 0
    __________________________________________________________________________________________________
    None



```python
batch_size = 2
dev_dataset_iterator = batch_iter(r"data/keras_bert_dev.txt", cat_to_id, tokenizer, second_label_list, batch_size)
model_test.evaluate_generator(generator=dev_dataset_iterator, steps=2)
```

    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.
    The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model.They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`).
    The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.





    [31.814546585083008, 23.794151306152344, 8.02039623260498, 0.0, 0.25]




```python
model_test.load_weights("trained_model/muilt_keras_bert_THUCNews_final.weights")
```




    <tensorflow.python.training.tracking.util.CheckpointLoadStatus at 0x7f3d53816700>




```python
batch_size = 2
dev_dataset_iterator = batch_iter(r"data/keras_bert_dev.txt", cat_to_id, tokenizer, second_label_list, batch_size)
model_test.evaluate_generator(generator=dev_dataset_iterator, steps=2)
```




    [0.815148115158081, 0.003070184262469411, 0.8120779395103455, 1.0, 0.25]



## load_model


```python
model_test = load_model("trained_model/muilt_keras_bert_THUCNews_final.model")
```


```python

```


```python

```